## RGB-KOAX-CY / RGB-KOAX-(St)Y

transmission cables for colour monitor


## Technical data

- Base cable 0,37/1,5 bzw. 0,6/3,7
- Temperature range
fixed installation $-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
flexing $-5^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$
- Mutual capacitance $67 \mathrm{nF} / \mathrm{km}$
- Impedance 75 Ohm
- Attenuation

RGB-Coax 0,37/1,5
$1 \mathrm{MHz}=2,0 \mathrm{~dB} / 100 \mathrm{~m}$
$2 \mathrm{MHz}=2,8 \mathrm{~dB} / 100 \mathrm{~m}$
$5 \mathrm{MHz}=4,0 \mathrm{~dB} / 100 \mathrm{~m}$
$10 \mathrm{MHz}=5,8 \mathrm{~dB} / 100 \mathrm{~m}$
$20 \mathrm{MHz}=8,4 \mathrm{~dB} / 100 \mathrm{~m}$
$50 \mathrm{MHz}=13,9 \mathrm{~dB} / 100 \mathrm{~m}$
$100 \mathrm{MHz}=19,8 \mathrm{~dB} / 100 \mathrm{~m}$
$200 \mathrm{MHz}=28,5 \mathrm{~dB} / 100 \mathrm{~m}$
RCB-Coax 0,6/3,7
$1 \mathrm{MHz}=1,1 \mathrm{~dB} / 100 \mathrm{~m}$
$2 \mathrm{MHz}=1,5 \mathrm{~dB} / 100 \mathrm{~m}$
$5 \mathrm{MHz}=2,5 \mathrm{~dB} / 100 \mathrm{~m}$
$10 \mathrm{MHz}=3,5 \mathrm{~dB} / 100 \mathrm{~m}$
$20 \mathrm{MHz}=4,5 \mathrm{~dB} / 100 \mathrm{~m}$ $50 \mathrm{MHz}=7,2 \mathrm{~dB} / 100 \mathrm{~m}$
$100 \mathrm{MHz}=10,4 \mathrm{~dB} / 100 \mathrm{~m}$
$200 \mathrm{MHz}=15,1 \mathrm{~dB} / 100 \mathrm{~m}$

- Minimum bending radius

15x cable Ø

## Cable construction

## RGB-COAX-CY ... x0,37/1,5

- Inner conductor bare copper, solid conductor $\varnothing 0,37 \mathrm{~mm}$
- Dielectric (insulation) of cell-Polyethylene
- Outer conductor of tinned copper wire braiding
- PVC-jacket in colour
red, green, blue for $3 x$ RGB COAX red, green, blue, white, black for $5 \times$ RGB COAX
- 3 or 5 Coax twisted with optimal lay-length
- Foil taping
- Overall braid-screening, tinned copper with optimal surface coverage and drain-wire
- PVC-outer jacket, black

RGB-COAX-CY 3x0,37/1,5 + 3x0,25

- Cable structure as per above, but with additional control cores $(3 \times 0,25)$ in the interstices
- Colour brown, green, white

RGB-COAX-(St)Y ... X0,6/3,7 (deviation)

- Inner conductor, bare copper, solid, conductor $\varnothing 0,6 \mathrm{~mm}$
- Outer conductor of tinned or bare copper wire braiding
- Foil taping
- Plastic coated aluminium foil and drain wire
- PVC-outer jacket, green or black


## Properties

The materials used in manufacture are cadmium-free and contain no silicone and free from substances harmful to the wetting properties of lacquers.

## Application

RGB cables are suitable for the transmission of both analogue and digital video signals.
They are used particularly as connecting cables for data systems, engineering applications (CAD, high-definition graphics) and in television studios. The three main signals (red, green, blue) are transmitted separately. Depending on the application, it is possible to supply the base cable with further coaxial cables or with symmetrical signal cores for the intensity and horizontal or vertical synchronisation.

| Part ${ }^{\text {No. }}$ | No. RGB-Coax n X mm | Outer $\varnothing$ ca. mm | Cop. weight $\mathbf{k g} / \mathbf{~ k m}$ | Weight ca. kg / km |
| :---: | :---: | :---: | :---: | :---: |
| 40145 | $3 \times 0,37 / 1,5$ | 7,2 | 23,0 | 59,0 |
| 40147 | $3 \times 0,37 / 1,5+3 \times 0,25$ | 8,2 | 39,0 | 89,0 |
| 40146 | $5 \times 0,37 / 1,5$ | 9,0 | 36,0 | 89,0 |

RGB-KOAX-(St)Y ... 0,6/3,7

| Part No. | No. RGB-Coax <br> $\mathbf{n} \mathbf{x ~ m m}$ | Outer <br> $\mathbf{c a . ~ m m}$ | Cop. <br> weight <br> $\mathbf{k g / k m}$ | Weight <br> $\mathbf{c a .} \mathbf{k g} / \mathbf{k m}$ |
| :--- | :--- | :--- | :--- | :--- |
| 40148 | $3 \times 0,6 / 3,7$ | 16,0 | 66,0 | 278,0 |
| 40149 | $5 \times 0,6 / 3,7$ | 19,0 | 102,0 | 397,0 |

[^0]
[^0]:    Dimensions and specifications may be changed without prior notice

